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The recently proposed simple collision model of activated bimolecular reactions, which takes into account
the nonspherical shape of molecules and includes the effects of the reagent rotation, has been extended to
treat reactions of vibrationally excited reagents. Vibrational excitations are supposed to affect the reaction
rates primarily through changes in the position and the height of the effective barrier. Critical dividing surfaces
were calculated on the assumption of vibrational adiabaticity en route to the critical dividing surface. The
positions of the adiabatic barriers as well as their heights were found to depend significantly on the choice
of coordinates and the definition of the reaction path. Two approaches were considered. The analysis which
gave thresholds in closest agreement with the values from quasiclassical trajectory (QCT) calculations, and
which was therefore adopted in the present calculations, uses a local mode analysis along the reaction path
expressed in terms of internal coordinates. Reaction cross sections were calculated for a range of translational
energies for O+ HCl(V ) 1), O+ DCl(V ) 1), and O+ H2(V ) 1). The results were compared with those
for vibrationally unexcited reagents and both of these sets of model results were further compared with the
cross sections from QCT calculations. It was evident that one significant difference between model and
QCT results arises because the model only estimates “forward flux” through the chosen critical dividing
surface, whereas trajectories allow for the possibility of “recrossing”, thus lowering the reactive flux.
Transmission factors allowing for this effect were calculated. The corrected model results are in satisfactory
agreement with the QCT results although some discrepancies remain. Possible reasons for these remaining
differences are discussed.

I. Introduction

Simple collision models of bimolecular reactions retain their
importance in chemical reaction dynamics, despite great ad-
vances in experimental and computational methods. Compari-
son of their predictions with experimental results, or with the
results from more sophisticated scattering calculations, can
provide considerable insight into the dynamics of reactive
collisions. In efforts to rationalize particular features of
experimental data or the results of complex calculations simple
models can be very helpful. Furthermore, once they have been
validated by comparison with accurate scattering calculations,
such models, which require much less computational effort than
accurate calculations, might be used to predict values of the
rate constants outside the regimes investigated experimentally
and they might be useful in the modeling of processes involving
complex chemical species.
In simple models of chemical reactions, attention is focused

on the reacting system at the “critical dividing surface”1

separating reactants from products. Reaction is assumed to
occur if the relevant component of the kinetic energy exceeds
the effective potential energy on this surface. The original line-
of-centers (LOC) model2-4 was derived using this assumption,
as was the subsequent extension of it, now generally referred
to as the angle-dependent-line-of-centers (ADLOC) model.1,5-9

This model has been later modified and developed10-18 on the
basis of the same energy considerations as in the original
formulation.
More recently, by defining a “kinematic mass” for the

collisions between reagents, the requirement for total angular
momentum conservation, which restricts the amount of kinetic
energy available for barrier crossing, was built into simple
models.18-20 The effects of rotational excitation of the reactants
could be taken into account19,20while preserving the essential
simplicity of the treatment. Effects of vibrational zero-point
energy could also be included in a simple way,20 by determining
the effective barrier heights on the assumption of vibrational
adiabaticity en route to the barrier.
In the present paper we extended the model proposed in refs

19 and 20 to treat reactions of atoms (A) with vibrationally
excited (V ) 1) diatomic molecules (BC). There is considerable
current interest in the effects of reagent vibrational excitation
on the rates of bimolecular reactions both of the simplest type,
A + BC, and of those which involve polyatomic reagents.21

The observed effects can often be rationalized in terms of
vibrationally adiabatic transition state theory (VA-TST),22,23

which assumes vibrational adiabaticity in the progress of the
system from large reagent separation up to the position of the
maximum on the appropriate vibrationally adiabatic potential
energy curve. The assumption of vibrational adiabaticity has
been tested for vibrationally excited reagents against classical
trajectories in ref 24. Furthermore, it has been tested at thermal
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energies in calculations which combined transition state theory
with quasiclassical trajectories (QCT).25 It was demonstrated
in ref 25 that, at the energies in question, the adiabatic
assumption was valid to a high degree of approximation for
both exothermic reactions, with “early” barriers, and for
thermoneutral reactions, with barriers placed approximately
midway along the minimum energy path leading from reagents
to products. The assumption of vibrational adiabaticity has also
been tested for vibrationally excited reagents against accurate
quantum dynamics.26

The vibrationally adiabatic potentialsVad(s,V) used in VA-
TST comprise two terms:

the electronic potential energyV(s), which only depends on the
positions along the reaction path, andEvib(s,V), which is the
energy of theV-th quantum state associated with the vibrational
motion orthogonal to the reaction path which transforms in the
limit s f -∞ into the BC vibration. In general, whereas the
zero-point energy correction (i.e.,Evib(s,V ) 0)) mainly changes
the effective height of the adiabatic energy barrier but the
changes of its position are usually small, both the position and
the height of the barriers are changed by vibrational effects when
V g 122,23 (Table 1). In the present work, we have based our
definitions of the critical dividing surfaces for A+ BC(V ) 1)
reactions on the concepts used in VA-TST which we have just
outlined. Examples of how the size and the shape of the critical
dividing surface are changed when the reagent is vibrationally
excited are given in Figure 1.

However, it is important to appreciate that the size and shape
of the critical dividing surface and the effective energy barriers
on this surface depend on what is assumed about the reaction
coordinate. We adopted the “local normal mode” (LNM)
picture, as promoted, e.g., in the paper of Agmon,27 but the
reaction path chosen here is different from those considered by
Agmon. In the present work the reaction path is defined to be
along one of the local normal modes, hereafter referred to,
somewhat inexactly, as the “asymmetric mode”. The local
separability of the motions parallel and perpendicular to the path
is then assumed. In view of the simplicity of our model the
effects of the bending mode have been neglected. It will be
clear that the reaction path chosen here satisfies the two
conditions derived by Natanson28which uniquely determine the
internal intrinsic path as he has defined it. The most essential
property which marks out the internal intrinsic path is that the
slow motion along the path is separated from the vibrations.
The internal intrinsic path can generally coincide with a gradient
following path only in collinear collisions.28a The model was
formulated either in the internal coordinates (r1, r2, R) or in the
coordinates (r, R, γ), wherer ) r1 ) rBC, r2 ) rAB, R ) π -
∠(C - B - A), and (R, γ) are the usual Jacobi coordinates.

The thresholds predicted using these two definitions of the
reaction path were compared with those from QCT calculations

and with the, presumably more accurate, barriers obtained by
periodic orbit analysis.29 The agreement was better when the
internal coordinates (r1, r2, R), i.e., LNM(R), were used and
they were adopted in subsequent calculations. With this model
we calculated the kinetic energy dependence of the total cross
section for the reactions O+ HCl (V ) 1), O+ DCl(V ) 1),
and O+ H2(V ) 1), with the reactants in the rotational ground
state (j ) 0), and compared the predictions of the model with
the QCT calculations.30,31 The choice of the rotational state
ensures that there are no “rotational shadowing effects” of the
kind described earlier.20 Furthermore, the above examples were
chosen because our previous studies20 involving reactants inV
) 0 showed that effects associated with the deflection of
trajectories from straight line paths prior to their reaching the
critical dividing surface appeared to be rather small in these
systems.

II. The Kinematic Mass Model

Simple models of activated bimolecular reactions have been
founded on the assumption that en route to the barrier reactive
trajectories can be adequately approximated by straight line
trajectories. A collision is supposed to be reactive if the system
has enough energy to overcome the barrier. In any model, the
energy available to overcome the barrier must be determined,
as well as the shape of the critical dividing surface and the
barrier height.
Energy Available To Overcome the Barrier. For the sake

of completeness we present here a brief derivation of the energy
available to overcome the barrier within the kinematic mass
model19,20 for diatomic molecules reacting with atoms. The
parameters used in the model are defined in Figure 2. At each
point of the trajectory the conserved total angular momentum
J0 is given by

wherej is the rotational angular momentum of the molecule,µ
is the reduced mass of the collision partners,v is the relative
translation velocity,vn is the component of velocity in the
direction normal to the potential energy surface,n, shown in
Figure 2,vII is the component of the velocity parallel to the
surface, andR is the vector from the center of mass of the
molecule to the atom (see Figure 2). It is convenient to write

where

The sum of the translational and rotational energiesEk can
be then written as:

TABLE 1: The Position and Height of the Barrier for the Collinear F + H2(W ) 0, 1, 2) Reaction As Determined by the
Present LNM(r) and LNM(γ) Methods and by the Periodic Orbit Dividing Surface (pods) Method in Ref 29

LNM(R) LNM(γ) pods

V r1 (Å) r2 (Å) Eb (kcal/mol) r1 (Å) r2 (Å) Eb (kcal/mol) r1 (Å) r2 (Å) Eb (kcal/mol)

0 0.749 1.740 0.585 0.750 1.697 0.698 0.746 1.745 0.576
1 0.744 2.015 0.283 0.745 1.896 0.398 0.746 2.111 0.254
2 0.743 2.197 0.181 0.743 2.043 0.278 0.735 2.412 0.323

Vad(s,V) ) V(s) + Evib(s,V) (1)

J0 ) j + µR × v ) j + µR × vn + µR × vII (2)

J0 ) J + µR × vII (3)

J ) j + µR × vn ) j + µvnR × n (4)

Ek ) 1
2

µv2 + j2

2I
) 1
2

µvn
2 + 1

2
µvII

2 + j2

2I
(5)

3908 J. Phys. Chem. A, Vol. 102, No. 22, 1998 Perdih et al.



whereI is the moment of inertia of the molecule. Equation 5
can be recast in the following form:

where

and

Equation 6 for the total kinetic energyEk is valid at any point
on the trajectory. If the reaction occurs in a sudden regime, it
may be assumed that it is controlled by the motion over a small
element dS of the potential energy surface near the barrier.
VectorsR, n andv| may be assumed not to change much during
the motion on dS. Consequently, the first and the third term in
eq 6 forEk must be regarded as nearly constant on dS, whereas
the second term can undergo large changes. It is therefore the
energy given by this term that is available to overcome the
barrier. In other words, the reaction may be assumed to occur
if the following condition is fulfilled:

whereEb is the barrier energy at the point of the critical dividing
surface lying on the line of the trajectory. It should be noted
that µ*/µ e 1 and that the deviation of this ratio from unity
reflects the importance of rotational recoil in the system. v*,
on the other hand, can greatly exceed vn, depending on the
rotational velocity.
The condition for a collision to lead to te reaction expressed

in eq 9 will cause the reaction cross sections predicted by the
present model to differ from those of the ADLOC model1,5-9

and extensions of the model.10-18 Nevertheless, for direct
activated bimolecular reactions, which all of these models are
designed to treat, the reaction cross section is expected to rise
monotonically with translational and rotational energy from the
energetic threshold.
Shape of the Critical Dividing Surface and the Barrier

Height. We turn here to the problem of determining the shape
of the critical dividing surface and the barrier height. Our

Figure 1. The shape of the critical dividing surfaces forV ) 0 andV
) 1, and the equipotential curves calculated at the relaxed interatomic
distances of the diatomic for the reactions O+ HCl, O+ DCl, and O
+ H2, on the corresponding potential energy surfaces.30,31 The shapes
of the critical dividing surfaces are calculated using the LNM(R)
approach (see text for details). The numbers on the contours correspond
to the potential energy in kcal/mol relative to the reactants. The solid
curve represents the critical dividing surface forV ) 0, and the dashed
curve represents the critical dividing surface forV ) 1. At a certain
value ofR the position of the vibrationally adiabatic barrier is shifted
abruptly to the region of the electronic barrier. This instability leads to
the double values when the transformation to Jacobi coordinates is
made.

Figure 2. Schematic representation of a molecule-atom collision. The
heavy line represents a part of the critical dividing surface; lighter lines
are equipotential contours calculated with the reactant in the relaxed
geometry.v is the relative velocity of the collision partners,R is their
center of mass separation,n is the normal to the equipotential energy
surface, andγ is the Jacobi angle. Straight line trajectories up to the
critical dividing surface are assumed.v, n, and the axis of BC need
not to be in the same plane.

Ek ) 1
2

µvII
2 + 1

2
µ*v* 2 + J2

I + µ(R × n)2
(6)

µ* ) µ

1+
µ(R × n)2

I

(7)

v* ) vn -
j ‚(R × n)

I
(8)

1
2

µ*v* 2 g Eb (9)
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analysis is based on the assumption of vibrational adiabaticity
and is limited initially to the potential energy surfaces for
collinear reactions. The treatment is then extended to noncol-
linear encounters. The assumption of separability of the motion
parallel and transverse to the reaction coordinate is essential
for defining the frequency for the transverse motion. The
vibrationally adiabatic potentialVad(s,V) at any points along
the reaction path was given in eq 1.
To satisfy the above requirements the internal intrinsic path

as defined by Natanson28 was chosen here because it has the
essential property that the slow motion along the path is
separated approximately from the vibrations. We note again
that the gradient-following path can generally coincide with the
internal intrinsic path only for collinear collisions.28a In
determining the path we found the local normal mode approach27

to be quite helpful. The essence of the normal mode approach
is in simultaneous diagonalization of the kinetic and potential
energy matrices. This ensures that the motion along the normal
modes is separable. It is customary to perform this analysis
for motion in a potential well or at a potential saddle pointsin
both cases the first derivatives vanish. As pointed out in ref
27, this fact is irrelevant as far as local separability is concerned
because first derivatives, upon changing the coordinates,
transform to a linear combination of the first derivatives in the
new coordinates. Calculations of normal modes and frequencies
can thus be performed at any point on a potential surface,
provided we neglect terms higher than second order in the
expansion of the potential. What one obtains by this analysis
are “local normal modes” (LNM) and their separability is
“local”. Globally they are coupled because of the higher order
terms in the expansion of the potential, and also dynamically,
through the dependence on the configuration.
The matrixF of the quadratic form in the power expansion

of the potential function has to be determined as a function of
coordinates chosen, and also the matrixG of momentum
coupling. Because we are neglecting the bending mode,F and
G are just 2× 2 matrixes.
To obtain the internal intrinsic reaction path, the points were

determined at which

whereQs is the symmetric local normal mode. At such points
the conditions (1) and (2) from ref 28b are satisfied which
uniquely determine the reaction path. The asymmetric local
vibrational modeQa coincides then with the gradient of the
potential in the local (Qs,Qa) coordinate system. At each point
the reaction coordinate points along the local asymmetric
vibrational mode and hence the local separability assumption
holds. The idea of minimizing the energy in a direction
transverse to the reaction coordinate is actually an old one,28c

although the implementations of it differ somewhat.
The above reaction coordinate has been proposed already,27

but so far it has apparently not been tested in any calculations.
Furthermore, the method of calculation27 starting from the saddle
point and following the direction of the local modeQa could
be less stable, because of numerical difficulties. The condition
that each point of the reaction coordinate must be at the center
of the local symmetric mode can be more easily implemented
numerically.
The procedure outlined above can be implemented rigorously

in dealing with a collinear atom-transfer reaction A+ BC f
AB + C. With r1 ) rBC and r2 ) rAB, the kinetic energy is

given by27

wheremA,mB, andmC are the masses of the atoms,M ) mA +
mB + mC is the total mass,µ1 andµ2 are the reduced masses
for relative translation in reactants and products, respectively

The dots denote the time-derivatives. The two-dimensional
kinetic energy matrixTr has then the elements:T11r ) µ2, T22r
) µ1, T12r ) T21r ) mAmC/M. The superscriptr denotes the
choice of (r1,r2) coordinates. In the same coordinate system
the force constant matrixFr can be defined:F11r ) ∂2V/∂r12,
F22r ) ∂2V/∂r22, F12r ) F21r ) ∂2V/∂r1∂r2. BecauseTr is positive
definite, one can find a new basis (Qs, Qa) in which TQ is the
unit matrix andFQ is diagonal. It is because (Qs,Qa) generally
depend on configuration that they are called “local normal
mode” coordinates. In an infinitesimal neighborhood of any
point (r1, r2) the motion is separable in the (Qs(r1,r2), Qa(r1,r2))
coordinate system, provided that the potential is approximated
by a Taylor expansion up to the second-order terms.
In determining LNM coordinates the standard procedures32

can be followed. One first finds the vibrational frequenciesωi

associated with them, as eigenvalues ofFr in a space with the
metric tensorTr

Nontrivial solutions of eq 13 exist providedω is one of the
roots of the characteristic equation

ω2 is real, becauseTr is symmetric and positive definite. The
corresponding eigenvectors (local normal modes)Qs andQa are
found by solving the linear equations (13).
The barrier for a noncollinear collision may in the present

model be evaluated for fixed values of the bending angle (R or
γ). We shall use the adiabatic scheme as proposed in ref 33.
Because the vibrational motion is the fastest, we may freeze
the bending-rotational motion in the calculation of the barrier
as a function of bend angle. The ensuing problem is similar to
that in the collinear case, in the sense that for a fixed value of
the bend angle the vibrational problem involves only two
degrees of freedom. The local normal-mode analysis was
performed by the method described in ref 32. For the O+
HCl reaction theV ) 0 andV ) 1 vibrationally adiabatic barriers
were also calculated with full normal-mode analysis. The results
differ only slightly from those obtained by the above simplified
approach.

III. Results of Calculations

With the model described above we calculated the kinetic
energy dependence of the total cross sections for the reactions
O + HCl(V ) 1), O+ DCl(V ) 1), and O+ H2(V ) 1) with
the reactants in their rotational ground state (j ) 0), and
compared the predictions of the model with the QCT calcula-
tions. Our previous work20 on these reactions with reactants

∂V
∂Qs

) 0 (10)

T) 1
2
(µ1r̆1

2 + µ2r̆2
2 + 2mAmCr̆1r̆2/M) (11)

µ1 ) mA(mB + mC)/M (12)

µ2 ) mC(mA + mB)/M

FrQ) ω2TrQ (13)

det(Fr - ω2Tr) ) 0 (14)
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in V ) 0 showed that the effects precluding the applicability of
the model are small in these cases.
The adiabatic barriers, as pointed out in the preceding section,

depend on the definition of the reaction coordinate. We have
therefore considered two plausible approaches to the barrier
calculation: the path along the asymmetric local normal mode
in Jacobi coordinates (LNM(γ)) and the path along the asym-
metric local normal modes in internal coordinates (LNM(R)).
LNM(R) is the internal intrinsic reaction path as defined by
Natanson.28 The adopted method of normal-mode analysis (ref
32) assumes that at each point mass-skewed, mass-scaled
coordinates are used. Because the potential is approximated
by the expansions up to the second-order terms the results of
the two approaches may generally differ.
The barriers obtained by the reaction paths considered for

the collinear geometry are shown in Figure 3 where the
corresponding thresholds estimated from the QCT results are
also given, for comparison. We see that the barrier height, as
well as its position, depend on the definition of the reaction
coordinate. The potential surface for F+ H2 reaction used in
the QCT calculations is oblate in the relevant barrier region
which precludes the application of simple models20 based on
the straight line trajectories. This is due to the strong reorienta-
tion effects occurring on such surfaces. Therefore, in this case,
the barrier could not be used for model calculations of cross
sections. We studied it because in this system the adiabatic
barrier evaluated with the periodic orbits method29 is also
available for comparison, in addition to the QCT results. The
adiabatic barriers for reaction F+ H2(V ) 0, 1, 2) obtained by
application of the LNM(R) and LNM(γ) are presented in Table
1 with those found by calculating periodic orbits on the same
potential energy surface.29 Results from the LNM(R) method
are in closer agreement with those found using periodic orbit
analysis.
From Figure 3 we see that the approach in which local normal

modes in internal coordinates (i.e., LNM(R)) are used to define
the reaction path also gives collinear vibrationally adiabatic
barriers that are generally in good agreement with the threshold
energies derived from QCT calculations. Although we recog-
nize that these two quantities are not actually the same because
of “nonadiabatic leakage” in the trajectories, these effects are
generally small.25 Consequently, and because we wish to
compare our present results with those from QCT calculations
in the absence of accurate quantum scattering results for the
systems that we have studied, we have based our calculations
on the reaction paths given by the LNM(R) method. Once the
values of (r1, r2, R) at the critical dividing surface were
established, they were transformed into the Jacobi coordinates
(r, R, γ) for use in the model. Theγ-dependence of the bare
electronic potentials and of the vibrationally adiabatic potentials
for V ) 0 and 1 is shown in Figure 4.
The reactions O(3P)+ HCl(DCl) f OH(OD)+ Cl (∆H0° )

0.95 kcal/mol) are examples of nearly thermoneutral heavy+
light-heavy systems. We have used the prolate potential surface
(Surface I) for which the QCT results were reported in ref 30.
For HCl(V ) 1), the threshold estimated from the QCT
calculations is slightly more than 2 kcal/mol, which is in good
agreement with the LNM(R) reaction path. The threshold
obtained with the alternative reaction path definition considered
here is about 3.5 kcal/mol, which is a rather poor approximation
to the QCT threshold. For the isotopic reaction with DCl(V )
1), the differences in the vibrationally adiabatic maxima obtained
by the different reaction paths are not as large as those for HCl;

the LNM(R) path, however, still gives the best agreement with
the threshold from the QCT calculations.
Although the QCT results which were already published30

could be used to choose the method of calculation of the
vibrationally adiabatic barrier, we found it necessary to redo
the QCT calculations of the kinetic energy dependence of the
cross section. There were several reasons for this. The cross
sections in ref 30 were calculated at a rotational temperature of
300 K and it was found that rotational numbers up toj ) 8

Figure 3. The dependence of the vibrationally adiabatic energy on
rAB (A ) O, B) H,D) for the collinear geometry of reactions calculated
by the two approaches defined in the text: LNM(R) (s), LNM(γ)
(- - -). The full horizontal lines indicate the threshold energies for
reactions estimated from QCT calculations.30,31
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contributed appreciably to the thermally averaged cross sections.
To exclude any possible effects of rotational shadowing20 (these
will be studied in more detail in a separate paper) we performed
QCT calculations forj ) 0. Furthermore, 5000 trajectories were
used here for each cross section calculation, to improve the
statistics.
Finally, performing QCT calculations allowed us to examine

the extent of “recrossing” which occurs in these systems in full-
scale trajectories. Recrossing occurs when a trajectory having
first passed through a surface in coordinate space defined to
separate reagents from products in the direction reagentsf

products, subsequently passes through the same dividing surface
in the direction productsf reagents. An odd number of such
crossings leads to reaction, whereas an even number does not.
As in transition state theory,34 the present model only calculates
the total forward flux through the critical dividing surface and
makes no allowance for subsequent recrossings, which lower
the cross section or rate constant for reaction.
Therefore, to be able to compare the model and the QCT

results properly, the extent of recrossing had to be determined,
because this result had not been reported previously for the
reactions in question. The surface separating reagents from
products was chosen to be that defined by the position of the
barrier in (R,γ) coordinate system. The recrossing properties
of a number of trajectories were investigated also by using the
separating surface defined byr1/r2 ) r1,e/r2,e, wherer1,eandr2,e
are the equilibrium internuclear distances in the reagent and
product molecules. The results of the two approaches were in
agreement with the trajectories investigated. Energy and
vibrational state dependence of the transmission factorsκ )
Nreact/(Nreact+ Nrecross), whereNi is the number of trajectories
in a sample leading to the specified result, were calculated for
O + HCl(V ) 0, 1) and O+ DCl(V ) 0, 1) and are shown in
Figure 5. There are no major differences between the recrossing
properties in these two reactions. As expected for heavy+
light-heavy systems, the extent of recrossing is rather large.
For V ) 0, values withκ close to 0.8 are found at kinetic

energies below 6 kcal/mol.κ then decreases with increasing
kinetic energy, reaching a value of ca. 0.43 at 12 kcal/mol
collision energy. The cross sections determined in our earlier
work (ref 20, Figures 12 and 13) should be corrected for
recrossing over the energy regionEtr > 7 kcal/mol. However,
this will not change the overall picture qualitatively. ForV )
1, κ does not differ much from the value 0.4 over the entire
kinetic energy range.
In Figures 6 and 7 the dependence of the reaction cross

sectionSr on translational energy calculated with the present
model, with and without corrections for recrossing, is compared
with that found from our QCT calculations for O+ HCl(V )
0, 1) and O+ DCl(V ) 0, 1). Corrections due to recrossing
are made by calculatingSr ) κSr°, whereSr° is the cross section
given by the model assuming no recrossing. The agreement
between the model and the QCT results is very good forV ) 0.
For V ) 1 the model cross sections are smaller than those for
QCT at all energies, but the agreement can still be regarded as
satisfactory, considering the simplicity of the model. Possible
reasons for the disagreement between the model results with
recrossing included and the QCT results for O(3P)+ HCl, DCl-
(V ) 1) are discussed below.
The reaction O(3P)+ H2 f OH+ H (∆H0° ) 2.0 kcal/mol)

is a slightly endothermic heavy+ light-light reaction. The
potential energy surface and the QCT results, to which we refer,
are presented in ref 31. From the results in Figure 3 we see
that both the position and the height of the barrier depend even
more strongly than in the cases of O+ HCl(DCl) on the
definition of the reaction path. For LNM(R), the barrier
maximum for collinear O+ H2(V ) 1) is about 4 kcal/mol,
which is in good agreement with the QCT threshold. It is
slightly displaced into the entrance channel. The barrier maxima
calculated with the other definition of the reaction coordinate
is higher and less displaced. Theγ-dependence of the barrier
for the selected reaction path is shown in Figure 4.
Once again it was necessary to carry out QCT calculations

to determine the extent of recrossing. The results of these
calculations are shown in Figure 5. For both O+ H2(V ) 0)

Figure 4. The dependence of the barrier height on the angleγ: (s)
pure electronic barrier; (- - -) vibrationally adiabatic barrier forV ) 0;
(-‚-‚) vibrationally adiabatic barrier forV ) 1.
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and O+ H2(V ) 1), the transmission factorκ is approximately
0.8 at all values of the collision energy. This larger value,
compared with those for O+ HCl and O+ DCl, is to be
expected given the lower reduced mass of the products, in this
case OH+ H, which allows the products of the O+ H2 reaction
to separate more quickly, thereby reducing the probability of
recrossing.
The dependence of the reaction cross sectionsSr on collision

energy for O+ H2(V ) 0) and O+ H2(V ) 1) calculated using
the LNM(R) analysis to characterize the critical dividing surface
is compared with the QCT results in Figure 8. As for O+

HCl and O+ DCl, once allowance is made for recrossing, there
is good agreement between the model and QCT results with
the molecular reagent inV ) 0. For and O+ H2(V ) 1), the
model cross sections are again uniformly smaller than those
obtained in trajectory calculations.

IV. Discussion and Conclusions

From the present investigation we may conclude that the
simple kinematic mass model19,20 for activated bimolecular

Figure 5. Translational energy and vibrational state dependence of
the transmission factorκ. ()): V ) 0 results, ((): V ) 1 results,
calculated atj ) 0. The oscillations of the error arise because for
increasing Sr the number of trajectories that recross (Nrecross) can undergo
large oscillations. It should be noted also that the total number of
trajectories that cross the barrier,Nreact + Nrecross, is quite small (less
than 100 out of 5000 trajectories).

Figure 6. The dependence of the total reaction cross sectionSr for the
reaction O+ HCl(V ) 0,1) on the translational energyEtr at j ) 0. (9,
0): quasiclassical trajectory results atV ) 0 andV ) 1, respectively;
(b, O): model results atV ) 0 andV ) 1 calculated; (4, 2): model
results corrected for recrossing atV ) 0 andV ) 1.

Figure 7. The same as in Figure 6 for the reaction O+ DCl (V ) 0,
1).

Figure 8. The same as in Figure 6 for the reaction O+ H2 (V ) 0, 1).
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reactions can be extended to reactions of vibrationally excited
reactants provided care is taken in selecting the reaction
coordinate. Both the shape of the critical dividing surface and
the barrier heights on this surface depend considerably on the
choice of the reaction coordinate. Effects of vibrational
excitation can be modeled, similarly to vibrational zero-point
energy effects,20 on the assumption of vibrational adiabaticity
en route to the barrier. The position and the height of the barrier
along the path are then determined by the maximum of the
vibrational adiabatic energyVad(s,V).
For the four reactions considered, O+ HCl(DCl), O + H2,

and F + H2, we found that the best agreement with the
thresholds estimated from the QCT results was obtained with
the reaction path in internal coordinates which at each point is
along the asymmetric local normal mode (LNM(R)). A sym-
metric local normal mode is then orthogonal to the path at each
point (provided we neglect terms higher than second order in
the expansion of the potential). The same approach in Jacobi
coordinates (LNM(γ)) leads to barrier heights which are less
satisfactory: they are generally too high, but the extent of the
disagreement with the QCT thresholds is case dependent. The
LNM(R) approach was therefore adapted.
As expected, the barrier heights decrease with vibrational

quantum numberV. Moreover, in the vicinity of the collinear
geometry, the increase of the barrier height withγ is consider-
ably slower forV ) 1 than forV ) 0. This leads to a larger
“cone-of-acceptance” for reaction and a consequent decrease
of the steric factor for reactions of vibrationally excited
molecules.
The reaction cross sections predicted by the model for O+

HCl, DCl(V ) 0, j ) 0), and O+ H2(V ) 0, j ) 0) and the
dependence of these values on collision energy agree quite well
with the QCT results, once allowance is made for recrossing.
When the molecular reagents are in (V ) 1, j ) 0), and
allowance is made for recrossing, the agreement becomes
somewhat worse, but can still be regarded as acceptable given
the simplicity of the model. The comparisons were made for
reagents inj ) 0 to avoid possible complications due to
“rotational shadowing”.20

As reported above, and in common with transition state
theory,34 the present kinematic mass model, as well as other
models based on the ADLOC treatment, makes no allowance
for recrossing effects. It should be appreciated that such effects
are more prevalent in reactions of the heavy+ light-heavy type.
Therefore, in this sense and in others (see below), reactions 1
and 2 constitute particularly searching tests of the model.
The remaining discrepancy, i.e., that between predictions of

QCT calculations and those of the model with corrections
applied for recrossing, probably has two main origins. The first
results from departures from straight line trajectories which are
assumed in the model. We have already pointed out19,20 that
such effects can negate the use of the model in cases where the
critical dividing surface is oblate so that full trajectories are
deflected toward the region of the critical dividing surface where
the barrier to reaction is low, which brings about an increase of
the cross section. This is true for the F+ H2 system. So,
despite the good agreement between the reaction threshold
determined from QCT calculations, from the LNM(R) analysis,
and from periodic orbiting dividing surfaces (PODS),33we have
not attempted to compare the reaction cross sections from our
model with those given by QCT calculations. On the prolate
surfaces used in the calculations which are reported here, the
effects of the intermolecular forces during the approach of the
reagents to the critical dividing surface will be less, but not

negligible. Furthermore, they would tend to orient the reagents
unfavorably for reaction, which would lead to the QCT reaction
cross sections being lower than those given by the model.
However, a potential surface which is prolate at the relaxed
interatomic distance r may become oblate at some otherr values
(see, e.g., ref 31(b)). Because of the intervals during which
the shape of the potential energy surface is oblate the QCT
reaction cross section may be higher than those given by the
model in which the prolate shape of the surface at the relaxed
r value was always assumed.
The second factor which could contribute to the discrepancy

between the model cross sections and those from QCT calcula-
tions is related to the different ways in which each set of
calculations is made quasiclassical. In the model, we introduce
the effects of vibrational quantization at the critical dividing
surface as well as at the other points of the reaction path. In
QCT calculations, the initial energy in the reagent vibration is
chosen to correspond to that of the vibration in the isolated
molecular reagent. Although the calculations of Frost and
Smith24 showed that there is a high degree of vibrational
adiabaticity as the reagents approach, the two assumptions
certainly do not correspond to one another. In this regard, the
reactions that we have chosen to study, i.e., O+ HCl, DCl(V
) 0, j ) 0), and O+ H2(V ) 0, j ) 0), constitute particularly
stringent tests of the model. First, because they are thermo-
neutral so that the barriers, at least for (V ) 0), are located
midway along the reaction path, with the result that there is a
fair degree of coupling between the transverse vibration and
relative translational motion en route to the barrier. Second,
especially in the cases of O+ HCl and O+ DCl, there is a
large change in the frequency of the transverse vibration as one
proceeds from the separated reagents to the critical dividing
surface. The QCT approach is an approximation to the exact
quantum treatment and it is generally an open question to what
extent the vibrational quantum level orthogonal to the reaction
path is adiabatically conserved in these calculations. Because
in the model calculations quantization is included, albeit
approximately, at the most crucial point along the reaction path,
in this respect they could be arguably superior to QCT
calculations.
In conclusion, we may say that the simple kinematic mass

model of activated bimolelcular reactions, developed in refs 19
and 20, can be extended to the reactions of vibrationally excited
reagents. However, the accuracy of the results depends on
whether one can adequately calculate the heights and positions
of the vibrationally adiabatic barriers. In addition, it may be
necessary to correct for recrossing effects. In the present paper,
we have chosen to make this correction through full-scale QCT
calculations. In practice, this is unnecessary. A computationally
more efficient method would be to start trajectories on the
critical dividing surface at those points and with those motions
which the model predicts would lead to crossing. This method,
similar to that advocated by Frost and Smith24 in which QCT
trajectories were combined with transition state theory, would
then yield a value of the transmission factor, as well as the
dynamic properties of the reaction products, from a relatively
small number of trajectories.
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